Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.TheVera RubinObservatory will provide an unprecedented set of time-dependent observations of the sky. The planned Legacy Survey of Space and Time (LSST), operating for ten years, will provide dense light curves for thousands of active galactic nuclei (AGN) in deep drilling fields (DDFs) and less dense light curves for millions of AGN from the main survey (MS). Aims.We model the prospects for measuring the time delays for the AGN emission lines with respect to the continuum, using these data. Methods.We modeled the artificial light curves using the Timmer-König algorithm. We used the exemplary cadence to sample them (one for the MS and one for the DDF), we supplement light curves with the expected contamination by the strong emission lines (Hβ, Mg II, and CIV, as well as with Fe II pseudo-continuum and the starlight). We chose suitable photometric bands that are appropriate for the redshift and compared the assumed line time-delay with the recovered time delay for 100 statistical realizations of the light curves. Results.We show that time delays for emission lines can be well measured from the main survey for the bright tail of the quasar distribution (about 15% of all sources) with an accuracy within 1σerror. For the DDF, the results for fainter quasars are also reliable when the entire ten years of data are used. There are also some prospects to measure the time delays for the faintest quasars at the lowest redshifts from the first two years of data, and possibly even from the first season. The entire quasar population will allow us to obtain results of apparently high accuracy, but in our simulations, we see a systematic offset between the assumed and recovered time delay that depends on the redshift and source luminosity. This offset will not disappear even in the case of large statistics. This problem might affect the slope of the radius-luminosity relation and cosmological applications of quasars if no simulations are performed that correct for these effects.more » « less
-
Abstract The nuclear region of Type 1 active galactic nuclei (AGNs) has only been partially resolved so far in the near-infrared (IR), where we expect to see the dust sublimation region and the nucleus directly without obscuration. Here, we present the near-IR interferometric observation of the brightest Type 1 AGN NGC 4151 at long baselines of ∼250 m using the CHARA Array, reaching structures at hundred microarcsecond scales. The squared visibilities decrease down to as low as ∼0.25, definitely showing that the structure is resolved. Furthermore, combining with the previous visibility measurements at shorter baselines but at different position angles, we show that the structure is elongated perpendicular to the polar axis of the nucleus, as defined by optical polarization and a linear radio jet. A thin-ring fit gives a minor/major axis ratio of ∼0.7 at a radius ∼0.5 mas (∼0.03 pc). This is consistent with the case where the sublimating dust grains are distributed preferentially in the equatorial plane in a ring-like geometry, viewed at an inclination angle of ∼40°. The recent mid-IR interferometric finding of polar-elongated geometry at a pc scale, together with a larger-scale polar outflow as spectrally resolved by the Hubble Space Telescope, would generally suggest a dusty, conical and hollow outflow being launched, presumably in the dust sublimation region. This might potentially lead to a polar-elongated morphology in the near-IR, as opposed to the results here. We discuss a possible scenario where an episodic, one-off anisotropic acceleration formed a polar-fast and equatorially slow velocity distribution, having led to an effectively flaring geometry as we observe.more » « less
-
Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008M⊙andM2= 0.130 ± 0.007M⊙, a projected separation ofr⊥= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government
